翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

solar wind : ウィキペディア英語版
solar wind

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun. This plasma consists of mostly electrons, protons and alpha particles with energies usually between 1.5 and 10 keV; embedded in the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar longitude. Its particles can escape the Sun's gravity because of their high energy, from the high temperature of the corona and magnetic, electrical and electromagnetic phenomena in it.
The solar winds flow outward supersonically at varying speeds depending on their origin reaching up to around one million miles per hour to great distances, filling a region known as the heliosphere, an enormous bubble-like volume surrounded by the interstellar medium. Other related phenomena include the aurora (northern and southern lights), the plasma tails of comets that always point away from the Sun, and geomagnetic storms that can change the direction of magnetic field lines and create strong currents in power grids on Earth.
==History==
The existence of a continuous stream of particles flowing outward from the Sun was first suggested by British astronomer Richard C. Carrington. In 1859, Carrington and Richard Hodgson independently made the first observation of what would later be called a solar flare. This is a sudden outburst of energy from the Sun's atmosphere. On the following day, a geomagnetic storm was observed and Carrington suspected that there might be a connection. George FitzGerald later suggested that matter was being regularly accelerated away from the Sun and was reaching the Earth after several days.
In 1910 British astrophysicist Arthur Eddington essentially suggested the existence of the solar wind, without naming it, in a footnote to an article on Comet Morehouse. The idea never fully caught on even though Eddington had also made a similar suggestion at a Royal Institution address the previous year. In the latter case, he postulated that the ejected material consisted of electrons while in his study of Comet Morehouse he supposed them to be ions.〔
The first person to suggest that they were both was Kristian Birkeland. His geomagnetic surveys showed that auroral activity was nearly uninterrupted. As these displays and other geomagnetic activity were being produced by particles from the Sun, he concluded that the Earth was being continually bombarded by "rays of electric corpuscles emitted by the Sun".〔 In 1916, Birkeland proposed that, "From a physical point of view it is most probable that solar rays are neither exclusively negative nor positive rays, but of both kinds". In other words, the solar wind consists of both negative electrons and positive ions.〔Kristian Birkeland, "Are the Solar Corpuscular Rays that penetrate the Earth's Atmosphere Negative or Positive Rays?" in ''Videnskapsselskapets Skrifter'', I Mat -- Naturv. Klasse No.1, Christiania, 1916.〕 Three years later in 1919, Frederick Lindemann also suggested that particles of both polarities, protons as well as electrons, come from the Sun.〔''Philosophical Magazine'', Series 6, Vol. 38, No. 228, December 1919, 674 (on the Solar Wind)〕
Around the 1930s, scientists had determined that the temperature of the solar corona must be a million degrees Celsius because of the way it stood out into space (as seen during total eclipses). Later spectroscopic work confirmed this extraordinary temperature. In the mid-1950s Sydney Chapman calculated the properties of a gas at such a temperature and determined it was such a superb conductor of heat that it must extend way out into space, beyond the orbit of Earth. Also in the 1950s, Ludwig Biermann became interested in the fact that no matter whether a comet is headed towards or away from the Sun, its tail always points away from the Sun. Biermann postulated that this happens because the Sun emits a steady stream of particles that pushes the comet's tail away. Wilfried Schröder claimed that Paul Ahnert was the first to relate solar wind to comet tail direction based on observations of the comet Whipple-Fedke (1942g).
Eugene Parker realised that the heat flowing from the Sun in Chapman's model and the comet tail blowing away from the Sun in Biermann's hypothesis had to be the result of the same phenomenon, which he termed the "solar wind". Parker showed in 1958 that even though the Sun's corona is strongly attracted by solar gravity, it is such a good heat conductor that it is still very hot at large distances. Since gravity weakens as distance from the Sun increases, the outer coronal atmosphere escapes supersonically into interstellar space. Furthermore, Parker was the first person to notice that the weakening effect of the gravity has the same effect on hydrodynamic flow as a de Laval nozzle: it incites a transition from subsonic to supersonic flow.
Opposition to Parker's hypothesis on the solar wind was strong. The paper he submitted to the Astrophysical Journal in 1958 was rejected by two reviewers. It was saved by the editor Subrahmanyan Chandrasekhar (who later received the 1983 Nobel Prize in physics).
In January 1959, the Soviet satellite Luna 1 first directly observed the solar wind and measured its strength.〔(Harvey, ''Russian planetary exploration: history, development, legacy, prospects''. Springer, 2007, p.26. ISBN 0-387-46343-7 )〕〔(David Darling, ''Internet Encyclopedia of Science''. )〕〔(【引用サイトリンク】title=Luna 1 )〕 They were detected by hemispherical ion traps. The discovery, made by Konstantin Gringauz, was verified by Luna 2, Luna 3 and by the more distant measurements of Venera 1. Three years later its measurement was performed by Neugebauer and collaborators using the Mariner 2 spacecraft.
In the late 1990s the Ultraviolet Coronal Spectrometer (UVCS) instrument on board the SOHO spacecraft observed the acceleration region of the fast solar wind emanating from the poles of the Sun and found that the wind accelerates much faster than can be accounted for by thermodynamic expansion alone. Parker's model predicted that the wind should make the transition to supersonic flow at an altitude of about 4 solar radii from the photosphere; but the transition (or "sonic point") now appears to be much lower, perhaps only 1 solar radius above the photosphere, suggesting that some additional mechanism accelerates the solar wind away from the Sun. The acceleration of the fast wind is still not understood and cannot be fully explained by Parker's theory. The gravitational and electromagnetic explanation for this acceleration is, however, detailed in an earlier paper by 1970 Nobel laureate for Physics, Hannes Alfvén.
The first numerical simulation of the solar wind in the solar corona including closed and open field lines was performed by Pneuman and Kopp in 1971. The magnetohydrodynamics equations in steady state were solved iteratively starting with an initial dipolar configuration.
In 1990, the Ulysses probe was launched to study the solar wind from high solar latitudes. All prior observations had been made at or near the Solar System's ecliptic plane.〔(【引用サイトリンク】title=Solar System Exploration: Missions: By Target: Mars: Present )

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「solar wind」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.